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Abstract. In this paper, we present the study of the global classical dynamics of a rigid diatomic molecule in
the presence of combined electrostatic and nonresonant polarized laser fields. In particular, we focus on the
collinear field case, which is an integrable system because the z-component Pφ of the angular momentum
is conserved. The study involves the complete analysis of the stability of the equilibrium points, their
bifurcations and the evolution of the phase flow as a function of the field strengths and Pφ. Finally, the
influence of the bifurcations on the orientation of the quantum states is studied.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 05.45.-a Nonlinear dynamics and
chaos

1 Introduction

Since the pioneering works of Langevin [1] and Debye [2]
to nowadays, the manipulation of the spatial direction
(rotational orientation and alignment) of a molecule by
means of external fields is one of the most active subjects
in physical chemistry (see, e.g., [3] to get an overall vision
of the state of the art). Among other things, the control
of the molecular orientation is critical for studies in chem-
ical reaction dynamics. For polar molecules, the simplest
orientation technique is provided by an static electric field
(see [4] and references therein), while intense nonresonant
laser fields are used to obtain molecular alignment [5].
Friedrich and Herschbach [6] and Cai et al. [8] proposed
the combination of static and laser fields to enhance the
molecular orientation and to gain versatility in the manip-
ulation procedure. Recently, the predicted properties of
this combined configuration have been successfully tested
at the laboratory [9]. Besides the original interest on the
spatial manipulation, molecules in external fields have be-
come perfect systems to follow the tracks of the classi-
cal phase space structure in the quantum spectra [10,
11]. Furthermore, rigid molecules in external fields show
in many cases the phenomenon of classical and quantum
monodromy [12,13].

Following the classical point of view, in this paper we
study the global dynamics of a rigid diatomic molecule
subjected to combined collinear electrostatic and non-
resonant polarized laser fields. In particular, we assume
that the laser field is either linearly or circularly polar-
ized. When the laser field is linearly polarized, the system
undergoes a pitchfork bifurcation [6] and a saddle-node
bifurcation [10,11]. While the pitchfork bifurcation has
completely described as a function of the parameters con-
trolling the dynamics, the presence of the saddle-node bi-
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furcation has been detected by numerical experimentation
for particular values of the parameters. Hence, the main
objective here is to characterize it on analytical grounds as
well as to get an overall vision of the dynamics. With this
is mind, the paper is organized as follows. In Section 2
we describe the one-dimensional Hamiltonian we use to
describe the dynamics of the rotor. This Hamiltonian de-
pends on three parameters. Two of them are external and
they represent the strength of the fields. The z-component
Pφ of the angular momentum plays the role of an internal
parameter because the axial symmetry of the problem at
hand. In Section 3 we analyze the stability of the equilib-
rium points, their bifurcation and the phase flow evolu-
tion for Pφ = 0 and for Pφ �= 0. We prove that for Pφ �= 0
the systems suffers one and only bifurcation of saddle-
node type. Moreover, we obtain analytically the bifurca-
tion curve in the parametric plane. Section 4 is devoted
to the study of the influence of the saddle-node bifurca-
tion on the orientation of the quantum states. Finally, in
Section 5, the main results of the paper are summarized.

2 The classical Hamiltonian

Let us consider an ideal rigid polar diatomic molecule of
moment of inertia I with a permanent dipole µ along the
molecular axis and polarizability components α‖ and α⊥
parallel and perpendicular to the molecular axis. In the
presence of an static electric field Es along the z-axis of an
inertial reference frame, the classical Hamiltonian govern-
ing the dynamics of the diatomic in spherical coordinates
(θ, φ, Pθ, Pφ) is given by

H = B

[
P 2

θ +
P 2

φ

sin2 θ

]
− Esµ cos θ, (1)

where B = �
2/2I is the rotational constant.



96 The European Physical Journal D

Now, let us consider the molecule subjected to a pulsed
laser field ε(t) = h(t/τ)ε0 cos(2πνt) linearly polarized
along the z-axis, being ν the frequency of the laser and
h(t/τ) the profile function of the pulse of τ duration. If
we consider that ν is an infrared or microwave frequency
which is nonresonant to any molecular frequency and that
v � 1/τ , the time-averaged Hamiltonian of the system
is [5]

H = B

[
P 2

θ +
P 2

φ

sin2 θ

]
− 〈ε(t)2〉

2
[
α‖ + (α‖ − α⊥) cos2 θ

]
,

(2)
where 〈ε(t)2〉 = h2ε2

0/2 is the averaged laser field.
Now, if the laser field ε(t) is circularly polarized in the

xy-plane,

ε(t) = h(t/τ)ε0(cos(2πνt), sin(2πνt), 0),

the corresponding averaged Hamiltonian of the molecule
reads as [13]

H = B

[
P 2

θ +
P 2

φ

sin2 θ

]
+

〈ε(t)2〉
2

[
α‖ + (α‖ − α⊥) cos2 θ

]
.

(3)
Taking into account that for linear molecules α‖−α⊥ > 0
and that the z-component Pφ = m of the total angular
momentum is a constant of the motion, the above three
configurations can be modeled by a unique dimensionless
one-dimensional Hamiltonian

H ≡ H/B = P 2
θ +

m2

sin2 θ
− w1 cos θ + w2 cos2 θ, (4)

where energies are expressed in units of B, and where a
constant energy shift has been omitted. The dimensionless
parameters w1 and w2,

w1 =
Esµ

B
≥ 0, |w2| =

∣∣∣∣ 〈ε(t)2〉2B
(α‖ − α⊥)

∣∣∣∣ ,

control the strength of the fields. Note that negative values
of w2 correspond to a linearly polarized laser field. On the
other side, positive values of w2 correspond to a circularly
polarized laser field.

3 Equilibrium points, stability and phase flow
evolution

From (4), the Hamilton equations of motion are

θ̇ =
∂H
∂Pθ

= 2 P,

Ṗθ = −∂H
∂θ

=
2m2 cos θ

sin3 θ
− w1 sin θ + w2 sin 2θ. (5)

The phase flow on the plane (θ, Pθ) is determined for the
most part by the number and stability of the equilibrium

points. The equilibrium points Ei = (θi, Pθi = 0) are
the roots of the system made of the right-hand side of (5)
equated to zero. Equivalently, the angles θi are the critical
points of the effective potential Ve(θ),

Ve(θ) =
m2

sin2 θ
− w1 cos θ + w2 cos2 θ, (6)

that is to say the roots of the equation

∂Ve

∂θ
= −2m2 cos θ

sin3 θ
+ w1 sin θ − w2 sin 2θ = 0. (7)

As it is well-known, the stability of a given equilibrium
Ei is determined by the eigenvalues of the linear stability
matrix resulting from the variational equations of motion.
In our problem, these eigenvalues are

λ(θi) = ±
√
−d2Ve(θi)

dθ2
. (8)

Then, when θi is a minimum (d2Ve(θi)/dθ2 > 0), Ei is
an stable equilibrium (center) because the corresponding
eigenvalues λ(θi) are complex. When θi is a maximum
(d2Ve(θo)/dθ2 < 0), the eigenvalues are real and the crit-
ical point Ei is an unstable equilibria (saddle point). At
this point, we distinguish between the case m = 0 and the
case m �= 0.

3.1 Case m = 0

By setting m = 0 in equation (7), it is easy to arrive at that
Ve(θ) has three critical points (i.e. three equilibria) [14],
namely,

θ1 = 0, θ2 = π, θ3 = cos−1

(
w1

2w2

)
. (9)

Note that, while θ1 and θ2 always exist, θ3 only takes place
when |w1/2w2| < 1 [15]. By substituting in (8) the critical
points (9), we get

λ1 = ±√
2w2 − w1,

λ2 = ±√
2w2 + w1,

λ3 = ±√
(w2

1 − 4w2
2)/2w2,

and the following stability properties can be easily de-
duced:

– E1 = (0, 0) is stable when λ1 are complex, and this
condition holds when 2w2 < w1;

– the equilibrium E2 is stable when 2w2 < −w1;
– because E3 exists when w1 < 2|w2|, this equilibrium is

stable when w2 > 0.

In Table 1 are summarized the equilibria, their condi-
tions of existence and stability, and the corresponding
energy. From the existence and stability analysis, we in-
fer the presence of parametric bifurcations at the lines
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Table 1. Conditions of existence, stability and energy of the equilibria for m = 0.

Equilibrium Existence Stable when... Energy Ĥ
E1 = (0, 0) Always 2w2 < w1 H1 = 2w2 − w1

E2 = (π, 0) Always 2w2 < −w1 H2 = 2w2 + w1

E3 = (cos−1(w1/2w2) , 0) w1 < 2|w2| w2 > 0 H3 = −w2
1/4w2

Fig. 1. (Color online) Evolution
of the square of the eigenvalues
λ (left panel) and the energy H
(right panel) as a function of the
rheostat parameter α (see the text
for more details). The blue, red
and green colors correspond, re-
spectively, to the eigenvalues and
to the energy of the equilibria E1,
E2 and E3. The bifurcations take
place at tanα1 = 2 (w1 = 2w2) and
tan α2 = −2 (w1 = −2w2).

w1/2w2 = ±1. We can confirm the presence of bifurcations
by studying the evolution of the eigenvalues λ and the en-
ergy H of the equilibria as a function of the parameters
(w2, w1). To do this, we introduce a rheostat parameter α
in the interval [0, π] such that

(w2, w1) = (w cosα, w sin α), 0 ≤ α ≤ π.

From this study, which appears in Figure 1, the paramet-
ric plane (w2, w1) can be divided in three regions where
the dynamics is different. In region L1 = {(w2, w1) | w1 <
2w2, α < arctan 2} (see Fig. 1) the three equilibria exist,
being E1,2 unstable while E3 is stable. As we approach the
segment w1 = 2w2 (tan α1 = 2), equilibrium E3 moves to-
ward E1, in such way that at w1 = 2w2, the two equilibria
collide. In other words, a pitchfork bifurcation between E3

and E1 takes place. From this bifurcation, only the equi-
librium point E1, which becomes stable, survives and in
the region L2 = {(w2, w1) | 2|w2| < w1, | tan α| > 2} only
exist the stable equilibrium E1 and the unstable E2. When
the line w1 = −2w2 (tan α2 = −2) is crossed, by a pitch-
fork bifurcation, from E2, which becomes stable, born the
unstable equilibrium E3. From this bifurcation, in region
L3 = {(w2, w1) | w1 < −2w2, α > arctan(−2)} we have
three equilibria: the unstable E3 and the two stable E1,2.

The presence of these bifurcations is illustrated in Fig-
ure 2, where the evolution of the phase flow is shown. For
clarity, and due to the invariance of the effective poten-
tial Ve under the transformation θ −→ π − θ, the phase
flow in this figure has been represented in the “extended”
plane (0 ≥ θ ≤ 2π, Pθ). In region L1, the phase flow
is made of three different regions of motion. One region
of rotational orbits R above the homoclinic orbit (sep-
aratrix) passing through E2 and, below this separatrix,
two nested regions of vibrational orbits V3 and V1 around

the stable equilibrium E3 and above the separatrix pass-
ing through E1, respectively. The V3 family corresponds
to molecular oscillations around E3, while V1 levels corre-
spond to oscillations around the positive z-axis. Note that
the presence of the separatrix passing through E1 prevents
strong molecular orientation along the static electric field.
On the other hand, the presence of the levels V3 indicates
that the circularly polarized laser field (w2 > 0) is able to
create dynamic regions where the molecule vibrates away
from the z-axis. In fact, when w2 � w1 (i.e., θ3 → π/2)
levels V3 oscillate around the polarization xy-plane of the
laser field. The family R corresponds to dynamic situa-
tions where the molecule describes complete rotations.

As a consequence of the first pitchfork bifurcation, in
region L2 the phase space structure changes because the
vibrational levels V3 have disappeared. Now, V1 levels cor-
respond to genuine oscillations around the (stable) equilib-
rium E1, which allows strong molecular orientation along
the positive z-axis. This dynamic situation is analogous to
the well-known pendular states [4] appearing for a static
electric field (w2 = 0).

After the second pitchfork bifurcation, in region L3

appears a new kind of vibrational levels around E2. We
name these vibrational orbits as V2. In this region the
laser field is linearly polarized (w2 < 0), and the V2 levels
correspond to molecular oscillations around the negative
z-axis. That is to say, the molecule is mainly oriented in
the opposite sense of the polarization axis of the fields.

Finally, we remark the presence of a heteroclinic-
connection bifurcation when w1 = 0 and w2 > 0. Note
that when w1 approaches zero, the homoclinic loops that
respectively are attached to E1 and E2 tends to merge, in
such a way that, when w1 = 0 the unstable equilibrium
points E1 and E2 have the same energy (see Fig. 1) and
they are connected by the same heteroclinic orbit.
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Fig. 2. Phase flow evolution and effective potential Ve for m = 0 as a function of the parameters (w1, w2). From left to right:
w1 = 4 and w2 = −10; w1 = 30 and w2 = 10; w1 = 4 and w2 = 10.

Fig. 3. Sketch of the poly-
nomials Z(θ) and S(θ). The
roots of P(θ) = Z(θ) − S(θ)
appear encircled. (a) Case
w2 ≥ 0; (b) case w2 < 0.

3.2 Case m �= 0

When m �= 0 the effective potential Ve tends to infinity at
θ = 0 and θ = π and the critical points, when they exist,
are located in the interior of the interval (0, π).

3.2.1 Case w1 = 0

In the case w1 = 0, equation (7) reads as

−2 cos θ

sin3 θ
(m2 + w2 sin4 θ) = 0, (10)

and the problem presents three equilibrium points θ1, θ2

and θ3, namely

θ1 = π/2, θ2 = arcsin[(−m2/w2)1/4],

θ3 = π − arcsin[(−m2/w2)1/4],

and the corresponding characteristic eigenvalues are:

λ1 =
√
−2 (m2 + w2),

λ2,3 = 2
√
−2w2

(√
−m2/w2 − 1

)
.

When w2 < 0 and −m2/w2 ≤ 1, the three equilibria ex-
ist, being θ1 unstable and θ2,3 stable. Otherwise, only θ1

exists, being stable. Hence, for w1 = 0, at −m2/w2 = 1 a
pitchfork bifurcation occurs [11].

3.2.2 Case w1 �= 0

Now, we express equation (7) as: P(θ) = Z(θ)−S(θ) = 0,

Z(θ) = −2m2 cos θ

sin3 θ
+ w1 sin θ, S(θ) = w2 sin 2θ.

When w2 ≥ 0, the direct application of the Bolzano the-
orem as well as the increasing and decreasing behavior
of Z and S (see Fig. 3a) ensure that these functions in-
tersect always one and only once in the interval (0, π/2).
Thence, the effective potential Ve presents a unique criti-
cal point θ1 in that interval. Moreover, because Ve tends
to infinity at θ = 0 and θ = π, θ1 is a minimum, i.e. it
corresponds to an stable equilibrium E1 = (θ1, 0). When
w2 < 0, the same study ensures that the number of cross-
ings between Z and S is either one or three (see Fig. 3b)
and the system has one or three equilibria depending on
the values of the parameters. In this case, note that one of
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the roots takes always place in the interval (0, π/2], while
the other two, when they exist, are located in the inter-
val (π/2, π). Let θ1 < θ2 < θ3 be such roots. Due that
Ve(θ = 0) → ∞ and Ve(θ = π) → ∞, θ1 and θ3 are min-
ima (stable equilibria E1 and E3) while θ2 is a maximum
(unstable equilibrium E2).

From equation (7) we get the following fifth-degree
polynomial equation

F(x) = 2w2x
5 − w1x

4 − 4w2x
3 + 2w1x

2

+ (2m2 + 2w2)x − w1 = 0, x = cos θ, (11)

and the equilibrium points of the problem are its real roots
in the interval (−1, 1). However, the polynomial F being
of degree 5 in x, there are no general formulae giving its
roots in exact terms. For this reason, we focus on when the
number of roots is one or three. Because we have shown
that there is always at least one root in the interval (0, π),
we take advantage of the resultant of a polynomial [16] to
compute the boundary between one or three roots, which
corresponds to the appearance of a double root θ2 = θ3 in
the interval (π/2, π). In this way the resultant is given by

Res

(
F ,

dF
dx

)
= 32 m4 w2(4096 w6

2 + 12288 m2 w5
2

+ (12288 m4 − 3072 w2
1) w4

2

+ (4096m6 + 11136m2w2
1)w

3
2

+ (384m4w2
1 + 768w4

1)w
2
2 − 96m2w4

1w2

− 64w6
1 − 27m4w4

1) = 0. (12)

Excluding the cases m = 0 and w1 = 0, polynomial F has
a double root when the last factor of (12) vanishes. That
is to say, when

Γ = 4096 w6
2 + 12288 m2 w5

2

+ (12288 m4 − 3072 w2
1) w4

2

+ (4096m6 + 11136m2w2
1)w

3
2

+ (384m4w2
1 + 768w4

1)w
2
2 − 96m2w4

1w2

− 64w6
1 − 27m4w4

1 = 0. (13)

From this discussion, once m is fixed, the parametric plane
(w2, w1) divides in two different regions where the number
of roots (equilibria) is either one or three (see Fig. 4).
These regions are kept apart by the curve defined by Γ = 0
as it is depicted in Figure 4. This curve corresponds to a
parametric bifurcation of saddle-center type. At this point,
it is worth notice that, when m = 0, Γ is given by

Γ = −64(w1 − 2 w2)3(w1 + 2 w2)3 = 0, (14)

which describes the two pitchfork bifurcation lines w1 =
±2 w2 for the case m = 0. Moreover, when w1 = 0, we
have that

Γ (w1 = 0) = 4096 w3
2(m

2 + w2)3 = 0,

which gives the pitchfork bifurcation taking place for
w1 = 0 at m2 = −w2.

Fig. 4. Plane of parameters (w2, w1) for a given m. The
number of equilibria in each region delimited by the curve
Γ (m �= 0) = 0 appears encircle. The dashed lines are the bi-
furcations lines w1 = ±2w2 for m = 0 (Γ (m = 0) = 0).

In order to corroborate analytically the stability be-
havior of the equilibrium points (θ1, θ2, θ3) we are com-
pelled to study the sign of the corresponding character-
istic eigenvalues. This study reduces to study the sign of
the polynomial

ξ(x) = 4w2x
6 − w1x

5 − 10w2x
4 + 2w1x

3

+ 4(2w2 − m2)x2 − w1x − 2m2 − 2w2,

x = cos θ, (15)

evaluated at the critical points (θ1, θ2, θ3) in the interval
−1 < x < 1. However, instead of checking the sign of (15)
(which is not a simple task), we show that equilibria con-
serve their stability properties. Indeed, let us calculate the
resultant of the polynomials ξ(x) and F(x), which reads as

Res(ξ,F) = −128 m8 w2

(
4096 w6

2 + 12288 m2 w5
2

+
(
12288 m4 − 3072 w2

1

)
w4

2

+
(
4096m6 + 11136m2w2

1

)
w3

2

+
(
384m4w2

1 + 768w4
1

)
w2

2

− 96m2w4
1w2 − 64w6

1 − 27m4w4
1

)
. (16)

Note, that excluding the cases m = 0 and w2 = 0, equa-
tion (16) vanishes with Res(F , dF/dx). Then, the equi-
libria (θ1, θ2, θ3) conserve their stability while they exist.

In accordance with the previous study, we find two dif-
ferent phase portrait. When there are three equilibria (see
left panel in Fig. 5), the phase flow is made of three dif-
ferent regions of motion: one region of rotational orbits R
above the separatrix passing through E2 and two zones of
vibrational orbits V1 and V3 around the stable equilibria
E1 and E3 respectively. In this region, despite the strength
of the static electric field, the linearly polarized laser dom-
inates the dynamics because the presence of the families
V1 and V3 indicates that the molecular axis is oriented
along either the positive or the negative z-axis. As we ap-
proach Γ = 0, the deep of the potential well on the right
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Fig. 5. Phase flow evolu-
tion and effective potential
for m = 2 and w1 = 10 as
a function of the parame-
ter w2. From left to right:
w2 = −50; w2 = −20;
w2 = 10.

decreases while the deep of the left-hand potential well
increases. Therefore, the equilibria E2 and E3 move one
to each other (see central panel in Fig. 5) and the vibra-
tional levels V3 tend to disappear. When the bifurcation
takes place, only the potential well passing through the
minimum E1 exists and the phase flow is made of oscilla-
tions around the equilibrium point E1 (see Fig. 5). In this
pendular-like situation the static electric field dominates
the dynamics.

Note that the saddle-node bifurcation not only causes
the extinction of the vibrational levels V3 but also the
distinction between rotational and vibrational levels. In
this pendular regime, the molecule describes oscillations
which amplitudes just depend on the energy. The smaller
the energy is, the more localized the molecular oscillation
is around the equilibrium E1. In other words, as the energy
increases, it takes place a smooth evolution from orbits
strongly oriented along the positive z-axis to non oriented
orbits.

4 Quantum mechanical consequences
of the saddle-node bifurcation

The objective of this Section is to study how the bifurca-
tions taking place in this problem affect the orientation of
the quantum states. In particular, we focus on the saddle-
node bifurcation.

To calculate the states of the quantum mechanical
Hamiltonian Ĥ associated to (4), we solve the usual sec-
ular equations that arise from the expansion of the wave
function Ψ in terms of the spherical harmonics Yj,m(θ, φ),
the eigenfunctions of the free-rotor. Since m is a good
quantum number, its value remains the same for a given
m expansion, and the so-called pendular states ΨJ,m,

ΨJ,m(θ, φ) = (J, m) =
∑
j=m

cJ;j,mYj,m(θ, φ), (17)

are labeled with m and with the symbol J . This symbol
corresponds to the value of j of the free-rotor state that for
w1 → 0 and w2 → 0 the hybrid state (J, m) correlates. If
only the laser field is present (w1 = 0), the eigenfunctions
resulting from (17) have definite parity (−1)j, while when
the static field is present (w1 �= 0) the eigenfunctions have
not definite parity.

Now, following a similar procedure as Friedrich and
Herschbach in [7], we fix the values m = 2 and w2 = −50
and we track the evolution of the two lowest states (2, 2)
and (3, 2). Because w2 < −m2, when the static field is
turned off, the effective potential (6) has two symmet-
ric potential wells, and as we can observe in Figure 6a,
(2, 2) and (3, 2) form a nearly degenerate doublet of states
aligned along the z-axis. We note that neither fully align-
ment nor fully orientation are possible due to the centrifu-
gal term in the effective potential (6).

As soon as the static electric field is turned on, the
doublet splits and opposite orientations are obtained (see
Fig. 6b): positive for (2, 2) and negative for (3, 2). Now,
the (2, 2) and (3, 2) states are located, respectively, at the
left-hand and at the right-hand potential wells. From a
classical point of view, they correspond to a V1 level and
to a V3 level. Because the orientation of the (2, 2) state re-
mains almost constant as w1 increases, we pay our atten-
tion to the evolution of the (3, 2) state. Between w1 = 13
and w1 = 15, the (3, 2) wave function undergoes a fast
positive reorientation (see Figs. 6c and 6d). In this new
situation, the state is also laying in the left-hand side po-
tential well and it corresponds to a classical V1 level. When
w1 > 20 the state (3, 2) is almost completely oriented to-
wards the positive z-axis (see Figs. 6e and 6f).

We can visualize the above orientation process from a
different and deeper point of view. The expectation value
ĉJm = 〈cos θ〉Jm characterizes the extent of the orien-
tation of a given (J, m) state. We use this quantity to
investigate the evolution of the orientation of the four
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Fig. 6. Evolution of the states |22〉 (solid line) and |32〉 (dashed line) for w2 = −50 as a function of w1.

lowest (2, 2), (3, 2), (4, 2) and (5, 2) states. The result
of this study is displayed in Figure 7. Roughly speak-
ing, when w1 > 50, we find that Figure 7a for w2 = 0
and Figure 7b for w2 = −50 show qualitatively the same
ĉJm evolution: a monotonic increasing of the orientation
of the states as w1 grows. In this pendular-like region, the
static electric field dominates the dynamics. Note that, for
m = 2 and w2 = −50, the equation (13) gives the saddle-
node bifurcation value w1c ≈ 49.428706. For w1 > w1c,
the effective potential (6) shows only one potential well.
The value w1c agrees very well with the value w1 ≈ 50
from which, in Figure 7b, the pendular regime prevails.

However, when w1 < 50, a more complex behavior is
observed because (6) has two potential wells. For w1 < 13,
the lowest (2, 2), (3, 2) and (4, 2) states are strongly ori-
ented along the positive or the negative z-axis. In this
interval, the laser field dominates the dynamics because
the two potential wells of (6) are deep enough to bind the
three states. However, this situation will change because,
as w1 increases, the deep of the right-hand well decreases
and the competition between the fields is served. In the
interval 13 < w1 < 15, ĉ32 shows an abrupt change from
negative to positive values while in the same interval, ĉ42

changes from positive to negative. These fast reorienta-
tions indicate that the states “jumped” from one potential
well to another: the (3, 2) state from the well on the right
to the well on the left, and the (4, 2) state from the well
on the left to the well on the right. Note that the change
of ĉ32 describes the fast reorientation process of the (3, 2)
state displayed in Figure 6. When w1 > 15, ĉ32 increases
monotonically. In the interval 20 < w1 < 40, ĉ42 becomes
again positive because the (4, 2) state moves to the left-
hand well because the right-hand one is not able to bind

 
 

Fig. 7. Evolution of the orientation 〈cos θ〉Jm for the states
(2, 2), (3, 2), (4, 2) and (5, 2) for (a) w2 = 0, and (b) w2 = −50
as a function of w1.

this state. For w1 > 40, the (4, 2) state undergoes a pos-
itive and definitive reorientation. The orientation ĉ52 of
the (5, 2) state describes smooth oscillations around zero
until, by w1 = 50, suffers a outstanding and final positive
reorientation.

From the above study, we deduce that the saddle-
node bifurcation acts like a rough quantum frontier from
which the pendular regime prevails. It is important to
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understand where is this frontier because this field con-
figuration has been widely used not only in theoretical
studies but also in experiments to control and manipu-
late the orientation of molecules (see [6,7] and references
therein).

5 Conclusions

As we noted in the Introduction, Joyeux et al. [10] and
Arango et al. [11,13] detected pitchfork and saddle-node
bifurcations in the phase flow of the system at hand. While
the appearance of the pitchfork bifurcations was estab-
lished on analytical grounds, the saddle-node bifurcation
was detected by numerical investigations. In this paper, we
proved analytically the nature of this saddle-node bifur-
cation as well as the we found the curve in the parameter
space where the bifurcation takes place. This bifurcation
curve allows us to give a complete description of the clas-
sical dynamics of the molecule as a function of the param-
eters. Finally, we have studied the impact of the classical
saddle-node bifurcation on the orientation of the quantum
states.

This research has been supported by the Spanish Ministry of
Science and Technology (DGI Project No. MTM2005-08595).
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